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Abstract: In the imminent future, smart grids will enable consumers who invest in distributed 

generation-battery systems and implement energy management systems to reduce electricity 

expenses. This study seeks to identify the ideal position and capacity of a customer's distributed 

generation equipment (e.g., a wind turbine) and battery inside a smart grid framework. The 

suggested method entails creating an electrical management system that considers stochastic 

variables, including wind speed, electricity rates, and load demands. A hybrid stochastic approach 

integrating Monte Carlo Simulation with Particle Swarm Optimisation (PSO) is proposed to attain 

optimal sizing and position. The PSO method is utilised to concurrently determine the ideal 

placement and dimensions of the wind generation-battery combination, guaranteeing maximum 

efficiency and cost-effectiveness. Multiple sensitivity analyses are conducted to confirm the 

resilience of the proposed strategy across many circumstances, illustrating its efficacy in 

optimising system performance. 

Key Words: Distributed generation, Particle Swarm Optimization, Optimal location and sizing of 

generators.. 

I. INTRODUCTION 

In order to improve the grid's dependability, the term "smart grid" has come to denote the 

integration of many technologies such as communication, computation, control, and information. 

mailto:pavanacharyadduri23@gmail.com
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Efficient, adaptable, and environmentally friendly power grid [1]. Reasons to upgrade to a smarter 

electrical grid include depleting energy resources, outdated infrastructure, worries about the 

environment, and rising consumer demands [2]. A more dispersed, adaptive, and predictive power 

system is anticipated with the arrival of the smart grid, which will impact power system planning, 

operation, and maintenance. 

To get there, we need to build new infrastructure that lets active customers participate, 

make room for distributed generating and storage alternatives, and include new products and smart 

control strategies [3]. 

Smart grids enable two-way communication and power flow, which means that electricity 

providers and consumers can take advantage of demand-side management [4], real-time pricing 

[5], power sell-back opportunities [6], etc., to make better use of their assets and save money. 

Customers of the smart grid of the future could not even be seen as passive loads when it comes 

to electricity. Customers can become integrated entities that aid the grid by installing smart 

appliances, storage devices, and distributed energy resources (DERs) that generate electricity, 

reduce peak demand, increase reliability, and delay investment [7]. The people who use a smart 

grid will also reap the rewards of these investments. 

Investment in renewable generation-battery systems with adequate capacities, for instance, 

will allow residential consumers to minimise their electricity expenditures. Depending on their 

resource availability and the current electricity tariffs, they will be able to purchase and store 

power, which they may then sell back to the grid when they have excess [6]. Residential customers 

will also be able to employ power management systems to control end-use equipment, which will 

allow them to modify their loads and transfer portion of them to off-peak hours [8]. 

Reducing a smart home's power bills is no easy feat; the key is finding the renewable generation-

battery system's optimal capacities in relation to the customer's power management system. 

Electricity rates, the load profile, grid connection policies, and the stochastic behaviour of 

renewable resources are some of the variables that determine the optimal capacity. 

Optimal capacity determination for various renewable generating and storage technologies has 

been the subject of research [9]-[20]. The ideal capacity for independent wind generation-battery 

systems has been identified by a few studies [9], [10]. Research pertaining exclusively to large-
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capacity wind turbines has been carried out in a few studies [11-13]. At the same time, studies 

have been carried out to find the sweet spot for the dimensions of hybrid wind/solar or generation-

battery systems, which typically have smaller capacities and can be deployed on the demand side 

of the grid. Many of these technologies are mainly intended to function in off-grid locations. To 

power a distant mobile phone base station, for instance, Ekren et al. [16] used a probabilistic 

method to choose the best standalone solar-wind energy conversion system with battery storage. 

The problem is that these studies don't give consumers the best possible capacity solution for the 

smart grid of the future because they haven't included all of the previously mentioned smart home 

capabilities, such load management and an electricity sell-back option. For the purpose of 

optimising investments in an DS, Schroeder [21] has introduced a stochastic approach. 

Nevertheless, the research did not consider the consumer's point of view but rather that of the 

distribution system operator. 

The necessary generation capacity has also been determined in [22] with system reliability 

in mind. But, electricity prices, demand-side management, or the possibility of smart grid 

consumers selling power back to the grid are not covered in that research. 

Power system demand side management has been the subject of several studies [23–27]. While 

distributed generation and energy storage were not considered in some studies, rule-based expert 

systems were used for load control [23], [24]. Other demand management systems include 

stochastic linear programming inside a dynamic pricing scheme [26] and heuristic optimisation 

methods [25]. Although these methods take electricity tariffs and load types into account when 

managing demand, they do not take consumers' distributed generation capacities into account. In 

their analysis of distribution system operators' energy management system costs, Cecati et al. [27] 

took responsive loads and wind generation into account. That method, however, only addressed 

an operational issue from a utility standpoint and did not take into account the advantages to 

specific households.  

The primary goal of our research is to find a way to minimise the total electricity cost of a 

smart house with an electricity management system by determining the optimal capacities of 

renewable generation (e.g., wind turbines) and battery storage. The following items are included 

in the study's outcome:  
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1) A smart home's load-side efficiency and the utilisation of its available facilities and options, 

such as renewable generation units, storage systems, and electricity transactions with the grid, can 

be enhanced with a rule-based electricity management system (HEMS).  

2) Taking into account the probabilistic behaviour of loads, renewable energy resources, and 

electricity rates, an optimisation model has been suggested to find the optimal capacities of the 

smart home's battery storage and renewable generation. This optimisation process makes use of 

the proposed HEMS. It is also possible to combine additional demand management systems into 

the presented methodology.  

3) To solve the optimisation model and establish the optimal renewable generating and storage 

capacity of the smart home, an iterative methodology combining a Monte Carlo simulation process 

with particle swarm optimisation (MCS-PSO) has been developed. In order to solve the 

optimisation model efficiently, the PSO particles [28] use the iterations in the MCS to capture the 

long-term stochastic behaviour of a smart home given the expected probability distributions of 

load, wind generation, and electricity rates.  

In order to prove that the suggested approach works, case studies are given. The sensitivity 

study takes into account a number of factors, including changes in power rates, costs of batteries, 

and distributed generation.  

Although "households" and "homes" are used to simplify the method provided in this 

paper, it should be highlighted that it is not necessarily confined to residential clients. Actually, by 

tweaking the input parameters and variables of the suggested model, the procedure can be extended 

to various kinds of customers with commercial or industrial demands or microgrids in the 

electricity grid. 

 

II. Requirement of system  

Using the problem description as a starting point, the following are some of the study goals:  

1. To use Matlab to simulate a network of IEEE 34 buses, containing a number of weak buses.  

Second, to use the PSO approach to determine the best size and location for the DG units in this 

power network.  
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2. To suggest a better PSO approach for the altered power network's optimal DG unit size and 

location.  

3. To compare the two methods and demonstrate how the proposed method is superior. 

III. Test system implementation: 

 

Figure 1 IEEE 33 bus system 

 

a) Diffusion of Power Sources  

Knowing the type and technology of DGs is crucial for selecting the appropriate type 

according to the grid's situation. To clarify, there are varieties of DGs that can be categorised as 

conventional based DGs, and they do not rely on renewable energy sources. The following are 

some categories under which DG kinds and technology fall. Old-fashioned power plants that use 

combustion engines, including microturbines (MT). In order to generate electricity, these turbines 

transform the kinetic energy that is derived from heat. According to El-Khattam and Salama 

(2004), the most common fuels used to provide heat through burning are gas, oil, and coal.  

 2-Generators that don't follow the conventional model and rely on renewable energy 

sources [El-Khattam and Salama, 2004]. Fuel cells (FCs) and other electrochemical devices, as 
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well as photovoltaic (PV) and wind turbine (WT) power systems, are examples of these generators. 

Memory devices such as batteries, flywheels, and ultra-capacitors! 

Micro-turbines, One kind of DGs that uses combustion is the micro-turbine, or MT. It 

might be thought of as a classic variety. Compact combustion turbines are known as MTs. 

 

b) Sizing and Location Using PSO 

Optimal DG sizing and placement can be achieved using PSO, one of several meta heuristic 

optimisation approaches. One way to look at PSO is as a computational approach that finds the 

best answer to a problem by repeatedly adjusting the answer based on certain constraints. 

Algorithm attempts to focus on a specific location to refine a proposed solution. Incorporating 

these two ideas, swarm particles use their memories to search for the best possible solution, saving 

information like their personal optimal position and the swarm's global optimal position.  

Every particle in PSO's search space has a global best position, a local best position, a velocity, 

and a solution and fitness. Particles are the individual components of a swarm. The particles swarm 

together, each with its own unique set of coordinates in three dimensions.  

The fitness function, also known as the objective function, is what bridges the gap between the 

ideal and physical problems and establishes how well a solution fits the former. Every iteration 

updates two terms in the search space. One is the optimal location in the search space as returned 

by the fitness function for a given point t.  

However, the second one represents the optimal location in the search space as returned by 

the fitness function for the entire swarm. Constraints can also take the form of upper and lower 

bounds on the velocities of the particles moving across the search space [Abugri and Karam, 2015]. 

In PSO, each particle is represented in a d-dimensional space, where 

 

represents the position and velocity of ith particle, respectively 
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where:  

r1 and r2 two random variables in the range of zero to one 

 c1 and c2 positive constants which determine how far the PSO particles move toward Pbest and 

Gbest 

ω: the inertia weight. 

 

The convergence is controlled by inertia weight (ω) which is chosen at suitable way so as to give 

a good balance between global and local exploration. Here, if ω ≥ 1, the velocities increase with 

time and PSO diverges, while, if 1 > ω > 0, PSO converges. 

The following are the main steps of the algorithm depicted in figure 3.4, which illustrates the PSO 

method: [Eberhart and Kennedy, 1995]: 

1.initialisation, which is when all the setup is set up, including the distributed network's setup, 

potential DG size and placement candidates, a randomly generated beginning population, an 

appropriate amount of repetitions, and lastly, the objective function, together with a randomly 

generated velocity and position.  

2. Fitness function calculation:following program start in the within the search space, the fitness 

function determines the total of all particles.  

3.Pbest and Gbest at each iteration, the population's t is computed. Named after the iteration's lowest 

fitness value. Also recorded is the difference between the current value and the value from the 

previous iteration. 
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Figure 4 Standard PSO algorithm 

4. In order to determine the new position and velocity for the following iteration. 

5. Refreshing the new position is the fifth step.  

6. If the condition was successful in achieving the given accuracy, the algorithm returns to step2. 

7. At last, the ideal or target result is defined as Gbest. 

c) A Home Energy Management System Based on Rules Section 
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Home Electricity Management System Based on Rules (B) Get the most out of your smart home's 

features with the help of HEMS's two sets of decision rules. The primary set of regulations controls 

the primary storage system's Task 1, as well as the total production and consumption of power in 

the house.  

Electricity rate, generation, and load statistics are collected first in this application. The guidelines 

are then put into play in order to reduce the customer's power bill to a minimum. Decisions to drain 

the battery or purchase power from the grid are made under this scheme if generation falls short 

of meeting the overall load. If this does not happen, the excess power will be sent back to the grid 

or saved for later use. Each period's remaining battery charge is carried over to the next one. 

 

IV.  MATLAB Test Results 

Case – 1: 

By analyzing for two DG’s sizing and location in IEEE 33 bus system 

 

Figure 5 Swarm movement curve  

Elapsed time for calculation is 87.666268 seconds. 

Power loss estimation 
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Power-Loss= 9.722534e+001 KW 

Power-Loss= 6.407375e+001 KVAr 

DG Location: 

DG1 Location= 33 

DG2 Location= 18 

DG sizing 

DG1 Power = 9.086391e+002 KVA 

DG2 Power = 9.340771e+002 KVA 

Case – 2: 

, By analyzing for one DG’s sizing and location in IEEE 33 bus system 

 

Figure 6 Swarm movement curve  
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Elapsed time for calculation is 50.349161 seconds. 

Power loss estimation 

Power-Loss= 1.468539e+002 KW 

 Power-Loss= 9.949003e+001 KVAr 

DG Location: 

DG Location= 33 

DG sizing 

DG Power = 1.866815e+003 KVA 

 

IEEE 33 bus system Loss analysis data 

Sr Plosskw Qlosskw voltage 

1 4.862579431 2.478755241 0.99 

2 23.99598524 12.22189025 0.988305635 

3 12.45017065 6.340742647 0.9796591 

4 4.087131442 2.081637924 0.974519127 

5 8.149134814 7.034723215 0.972342745 

6 0.722521689 2.388335583 0.966041446 

7 2.304771349 0.761669587 0.964009551 

8 2.752372129 1.977432403 0.960826961 

9 2.329147232 1.650928115 0.955956438 

10 0.338035662 0.111761536 0.95147391 

11 0.476785392 0.157654999 0.95083306 

12 0.83837161 0.65961799 0.949781167 

13 0.002327772 0.003064011 0.946617933 
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14 0.01448768 0.01289428 0.946484025 

15 0.077133348 0.056328118 0.946127532 

16 0.307768144 0.410914644 0.945355966 

17 0.412572737 0.323520152 0.943016009 

18 0.263952252 0.256453609 0.941333473 

19 0.847803157 0.763935912 0.987447897 

20 0.102651296 0.119922784 0.983863694 

21 0.044454865 0.058777748 0.98315833 

22 3.207187697 2.191436097 0.982520475 

23 5.185294067 4.094534547 0.976138517 

24 1.297907142 1.015583367 0.969593684 

25 2.487939229 1.267255745 0.966337504 

26 1.26209775 0.64259516 0.9642537 

27 5.455208871 4.809753091 0.9646359 

28 7.485715592 6.521378194 0.967388272 

29 3.722681525 1.896183594 0.968548035 

30 1.524601285 1.506764201 0.966924605 

31 0.203951867 0.237713948 0.962607157 

32 0.012597304 0.019586776 0.960590652 

33 97.22534022 64.07374547 0.960328762 

V. Conclusion 

The suggested hybrid stochastic approach finds the best size and placement for smart grid-

integrated distributed generation-battery systems. The method allows for a more precise and 

adaptable energy management system by taking into account random variables like wind speed, 

power rates, and load. Investors in distributed generating systems can enjoy better efficiency and 

lower electricity prices because to PSO's integration, which optimises both location and size 

simultaneously. If you want to be sure you can use the method in any situation, the thorough 

sensitivity analyses show that it works well even when the conditions change.  
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Smart grids have the ability to improve energy efficiency and dependability by supporting 

distributed generation and battery systems, according to this study's conclusions. Through careful 

optimisation of system capacity and placement, the suggested strategy has the potential to 

significantly impact the trajectory of decentralised energy management going forward. This 

approach paves the way for a more sustainable and cost-effective energy environment by providing 

customers and grid operators with a practical and scalable alternative to improve demand-supply 

balance. 
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